
The Visual Computer (1998) 14:83±94
� Springer-Verlag 1998 83

Shadow generation
for volumetric data sets
Rolf H. van Lengen, Jörg Meyer,
Mathias Matzat, Hans Hagen

University of Kaiserslautern,
Department of Computer Science,
P. O. Box 3049, D-67653 Kaiserslautern, Germany
e-mail: {lengen|jmeyer|hagen}@informatik.uni-kl.de
matzat@aed-graphics.de

Shadow information is essential for visual
perception of complex scenes. Both shadow
location and orientation clarify spatial rela-
tionships between objects. Shadows improve
depth perception and the impression of real-
ism. Our algorithm, integrated into a hybrid
rendering system for medical data sets, is
based on a shadow Z-buffer technique for fast
and efficient shadow generation. Volumetric
data contain information about the grid points
only. Such data do not provide surface infor-
mation that could be projected immediately
onto the shadow map. To solve this problem,
we have implemented two techniques. The
first uses a modified adaptive version of the
well-known marching cubes algorithm for
the special characteristics of medical data
sets. The algorithm uses material properties
for a precise representation of object bound-
aries, generating volumetric objects quickly
and effectively. There are two representations
of the same data set: we use a view-indepen-
dent approximation to display shadows and
the original representation of the volume for
object visualization in full precision. The sec-
ond algorithm uses a ray-tracing approach to
create shadow maps. The same routine is
used for object rendering, but is restricted to
depth-value generation. Semitransparent ob-
jects are handled by storing an intensity pro-
file in addition to the depth value.

Key words: Volume visualization ± Scien-
tific visualization ± Medical imaging ± Shad-
ow Z-buffer ± Shadow map

1 Introduction

Visual perception of a scene can be enhanced by
different depth cues, such as occlusion, hidden sur-
faces, and shading. Shadow generation adds anoth-
er depth cue to the scene because it clarifies the
spatial relationship of objects in space. Figure 1
shows an example of how the position and orienta-
tion of shadows can be used to describe the loca-
tion of an object with respect to a surface.
Without shadow information, it is impossible to
judge the position of a sphere with respect to a sur-
face (Fig. 1a). In Fig. 1b the sphere obviously
touches the ground, while Fig. 1c, with the object
in the same position, shows a levitating sphere. It
is important to note that all three images are iden-
tical, differing only in the existence or absence of
the shadow and its position. Shadows enable us to
gain knowledge about the distribution of objects in
space in a two-dimensional image without real
depth. Experience and skill help us to interpret
the situation correctly. Therefore, generation of
shadow information is mandatory in three-dimen-
sional computer graphics to avoid ambiguities
and misinterpretations.
Shadow generation requires us to consider two as-
pects. First, we have to determine the shape. If a
shadow is mapped onto a plane, the shape is creat-
ed simply by projecting the object's silhouette onto
the plane. If a shadow is mapped onto a nontrivial
surface, we have to handle a more complicated sit-
uation for which we have to find a suitable method.
Second, we have to calculate a light intensity at the
position where shading is required. In general, a
point that is not directly exposed to the light source
is not completely dark, but is illuminated by reflec-
tions from other objects in the neighborhood. Sim-
ple illumination models use a constant term to de-
scribe diffuse lighting, but precise evaluation of
light intensities requires a global illumination
model (ray-tracing, radiosity).
This paper describes a method for creating shadow
information for the three-dimensional visualization
of hybrid medical data sets. The algorithm is inte-
grated in our Computer Aided Image Processing
for Medical Applications (CoMED) system. Co-
MED is a hybrid rendering engine for volumetric
and geometric data with applications in medical
imaging and diagnostics. The data sets are provid-
ed by imaging techniques such as computed to-
mography (CT) and magnetic resonance imaging
(MRI). These volumetric data can be combined
with geometric data from CAD. Both data sets
share the same rendering pipeline. To speed up

Correspondence to: R.H. van Lengen

84

the visualization process, the system is designed to
run on a heterogeneous cluster of small worksta-
tions with low memory requirements.
First we describe some standard methods for shad-
ow generation.

2 Previous and related work

Several methods for shadow generation (Watt and
Watt 1992) are known. Most of them can be ap-

plied to polygons only. Others do not support
transparent objects. For medical imaging, we need
an algorithm that is fast, efficient, and ready to
handle transparent layers of tissue. During an ani-
mation, we would like to keep the extra computa-
tional overhead for shadow generation low, in or-
der to maintain efficiency.
In 1978, Atherton and colleages proposed an area
subdivision algorithm for shadow generation. It is
based on a hidden surface method, which was pub-
lished in the year before by the same authors
(Atherton and Weiler 1977). The algorithm deter-
mines the visible parts of the polygonal scene,
viewed from the perspective of the light source.
The visible polygons and their fractions make up
the illuminated part of the scene. All other parts
are in the shadow. Since all operations are per-
formed in object space, the algorithm provides a
very precise representation of shadows in the scene
independently of the camera position.
The concept of shadow volumes, introduced by
Crow (1977) and improved by Bergeron (1987),
is a well-known technique that works primarily
on polygonal scenes, but can also be used for more
complicated surface representations. Each poly-
gon, together with a light source, defines a shadow
volume, eventually clipped at the viewing pyra-
mid. A point is in the dark if there is an odd num-
ber of intersections between the shadow volume
and a straight line, which is defined by the camera
position and the point under consideration. If the
number is even, the point is illuminated.
Appel (1968) integrates shadow generation into a
scan line algorithm for hidden surface elimination.
In a preprocessing stage, a light source is surround-
ed by an appropriate sphere. All polygons of the
scene are projected successively from the view of
the light source onto the sphere. For each polygon
a list is created. It consists of all shadow polygons
that partially or completely overlap the polygon in
the projection. During visualization, the visibility
problem is solved for the current scan line. Each
part of the scan line corresponds to a visible region
of a polygon or to the background of the scene. For
shadow generation, the visible region of a polygon
is projected onto each shadow polygon from the
corresponding list. In case of overlapping, the
shadow polygon produces a shadow and the corre-
sponding portion of the scan line is dark. A major
disadvantage of this method is that it is applicable
to point sources only, and it also requires an ex-

a

b

c

Fig. 1a±c. Shadow information is essential for the visual
perception of an object location

85

tremely large amount of memory to store shadow
polygon lists. Efficiency and computation time de-
pend on scene complexity.
Ray-tracing or ray-casting algorithms provide an-
other method for shadow generation. For each vis-
ible location in the scene, a line is drawn from the
intersection point to each light source (shadow
ray). An obstacle is detected if there is an intersec-
tion with any other object in the scene between the
intersection point and the light source (Glassner
1989). In this case, the intersection point is in an
area that is obscured by the obstacle with respect
to the light source. This means that the intensity
of the corresponding light source is neglected for
the conclusive evaluation of pixel intensity. The fi-
nal result for the intensity of a pixel is calculated
by summing up weighted partial intensities, which
must be attenuated in proportion to distance.
Ray-tracing algorithms can potentially produce
high-quality photo-realistic images. Although sev-
eral approaches for acceleration have been imple-
mented, e.g., the light buffer (Haines and Green-
berg 1987), one of the major drawbacks of ray-
tracing algorithms is their complexity in time (Fo-
ley et al. 1989).
Traditional shadow Z-buffer algorithms can merely
handle opaque objects because only the depth val-
ue of the closest intersection with respect to a cer-
tain light source is stored. Especially for medical
data, it is important to reveal the interior structure
of an object. Hence it is necessary to render parts
of the object transparently. Our approach handles
both opaque and transparent objects. For those pix-
els in the shadow map that are covered by transpar-
ent objects from the scene, an intensity profile is
stored in addition to the depth value.
Imaging techniques, such as CT or MRI, produce
volumetric data sets, which are arranged in a
three-dimensional regular grid, with scalar or vec-
tor information at each vertex. In addition to
scanned or measured data, a material label derived
from a segmentation algorithm can be attached to
each vertex.
We use a ray-casting technique to visualize preseg-
mented volumetric data sets with label information
(Lengen and Meyer 1994). Each ray traverses and
samples the data set at discrete positions along the
ray. Each sample provides the color and transparen-
cy of the material that is most likely at this position.
A weighted average of all samples according to
transparency determines the final color of the pixel.

Our system processes volumetric data sets that are
arranged in slices of two-dimensional grids. Each
pair of slices is called a block (Fig. 2). During vi-
sualization, these blocks must be loaded once only.
The rendering stage processes each block and its
neighborhood separately, so that at most four slices
must be stored in memory at the same time (Len-
gen 1992). This drastically reduces the amount of
memory as it is no to keep the whole data set in
memory. It also enables us to run the system on
small workstations, even on a standard PC. Our
system is also able to handle geometric data, e.g.,

voxel

a

b

c

Fig. 2. a MRI scan; b array of slices; c block processing

86

data from CAD, which can be combined with vol-
umetric data so that we can display both data sets
in the same image.
Area subdivision, shadow volumes, and scan line
methods can be applied to polygon scenes only.
They tend to be very slow for complex scenes.
We need a method that provides shadow genera-
tion for non-polygonal scenes. As an alternative
to the three algorithms already mentioned, our
fourth method can handle objects in different rep-
resentations. It uses a shadow ray that traverses the
scene. The major drawback is the fact that the
whole data set must be loaded into system memory
in order for obstacles to be detected. Our ray tracer
does not fulfil this prerequisite because it uses
block processing, which implies that only a part
of the data set is available in system memory at
any time. Therefore we use a preprocessing tech-
nique that collects all the necessary shadow infor-
mation prior to visualization.
The method is based on Williams' Z-buffer shad-
ow algorithm (Williams 1978), which provides
an efficient way of creating shadow information
on scenes of arbitrary complexity. Shadows can
be cast onto any other object in the scene. We im-
plement a two-step method. First, we render the
scene from the perspective of the light source. In-
stead of calculating colors and transparencies, only
the z values of the closest object with respect to the
light source are stored in a shadow map. It is nec-
essary to calculate an individual shadow map for
each light source.
In the second step, we render the scene from the
camera perspective. Each visible object point is
mapped into the coordinate system of the light
source and projected onto the associated shadow
map. If the depth value from the shadow map is
lower than the z value of the projected point, then
the point is in shadow; otherwise it is irradiated by
that light source.
The following sections describe how to apply this
principle to volume visualization.

3 An approximation approach
to shadow generation

A volumetric data set can be interpreted as a regu-
lar grid of vertices with associated data values that
are concentrated in single points. It is impossible to

render these discrete data directly or to project
them onto a shadow map. Such a data set can be
sampled by a ray-tracing technique in order to ob-
tain information about material composition and
surface properties, or the data can be converted in-
to a surface representation so that we can use stan-
dard algorithms for polygon rendering.

3.1 A surface representation
for shadow maps

The most popular algorithm that creates surfaces
from volume data is the marching cubes algo-
rithm (Lorensen and Cline 1987). The surface di-
vides the data set into two subsets containing the
vertices inside and outside the surface. The sur-
face itself is represented as a set of triangles. Ac-
cording to a predefined criterion, eight vertices
of a voxel are subdivided into two sets of vertices
(inside and outside) with respect to the surface.
Triangle faces inside the voxel separate the two
subsets. Within a voxel, there are 256 different
configurations. Neglecting symmetrical cases,
this large number can be reduced to 15 unique
topologies. Surface information for each of these
cases is stored in a table. Empty voxels or voxels
with all vertices marked contain no surfaces. The
algorithm guarantees a closed surface construct-
ed of polygons (Montani et al. 1994). Triangle
vertices are located on voxel edges that are con-
nected to vertices from disjoined subsets (Matzat
1994).
Originally, the algorithm was intended to create
isosurfaces on discrete data sets. The inside/out-
side classification criterion is a predefined thresh-
old. The position of a triangle vertex on a voxel
edge is determined by linear interpolation. In our
system, we have a material label associated with
a vertex that is evaluated as a criterion for an in-
side/outside test. Since we have binary information
only, the triangle vertex would always be posi-
tioned at the center of a voxel edge and would
cause serious artifacts, as we would always have
the same angles for triangles. Therefore we use
an additional threshold to identify a proper posi-
tion for the vertex on the voxel edge. A fixed
threshold would not be sufficient here because, if
the threshold is out of the range of the two voxel
corners, a new vertex (created by interpolation)
would no longer be inside the voxel. Therefore

87

we use an adaptive threshold, which is the weight-
ed average of neighboring voxels. The result of
this method is a smooth surface that encloses all
voxel vertices with identical material labels.
With this method we can create shadow maps for
different kinds of objects. For the volume, two
slices in a sequence are loaded into system memo-
ry each time, forming a block that is actually a sin-
gle layer of voxels. For surfaces, we register the
appropriate triangles into the voxels. These trian-
gles, are transformed into the coordinate system
of the light source, and are then projected onto
the corresponding shadow map. For each pixel
covered by the projection of the triangle, the dis-
tance between the light source and the triangle in-
tersection is calculated. If the new triangle is closer
to the light source than all the previous ones, the
shadow-map entry is replaced by the new z value.
A fast scan-conversion method projects the trian-
gles onto the shadow map. It is important to note
that the shadow maps can be calculated simulta-
neously for all light sources.
The method described is applicable only to light
sources located outside the scene because the
scene as a whole must be projected onto the shad-
ow map. When a light source is inside the scene,
we create a cube of six shadow maps, completely
enclosing the scene (shadow cube). Before project-
ing a triangle onto the shadow cube, we determine
the relevant surfaces of the cube, i.e., those faces
that are affected by the triangle. Triangles must
be clipped at the viewing pyramid to provide an
accurate projection onto a cube face. If the result
is a quadrangle, we decompose the polygon into
triangles in order to apply our standard scan-con-
version algorithm. During visualization, it is nec-
essary to check in which viewing pyramid a sam-
ple point is located. According to the result, we
evaluate the corresponding face of the shadow
cube (Matzat 1996).

3.2 Artifacts

Shadows created by the shadow Z-buffer tech-
nique sometimes show artifacts due to different
sampling rates that were used for shadow map
generation and image rendering. Rough edges
and MoirØ patterns caused by self-shadowing are
typical flaws. Reeves et al. (1987) introduce a
method called percentage closer filtering (PCF),

which can be applied to smooth the edges of a
shadow (Fig. 3).
A PCF filter determines the percentage of a pixel
not struck by a light source, thus avoiding a binary
decision and abrupt discontinuities in light intensi-
ty. A small set of pixels in the neighborhood is
checked for shadow features, and the ratio between
unshaded pixels and the size of the whole area de-
termines the fraction of light that illuminates the
point.
Self-shadowing is a difficult problem because the
objects in the scene are not necessarily sampled
at the same locations as those that were used for
shadow-map generation. Usually they are com-
pletely different. Self-shadowing occurs if the dis-
tance t between a sample point and the light source
is greater than a distance s, which is the depth value
of a shadow map pixel, provided that both points
belong to the same object surface (Fig. 4a).
Image locations falsely identified as part of the
shadow area severely disturb the visual perception
of a scene. A standard method to reduce the error
is to subtract a small bias from the distance be-
tween the test point and the light source before
comparing it to the depth value in the shadow
map. A bias can be a constant or a value chosen
randomly from an interval (Reeves et al. 1987).
Nevertheless, there are some cases when a single
bias is not sufficient to avoid self-shadowing.
The interval depends on the dimension of a given
scene and requires interactive searches to find a
practical value.
Our method tries to avoid the necessity of interac-
tive manipulation. If a triangle is projected onto
the shadow map, then for each pixel in the shadow
map we select the largest depth value of a clipped
triangle. We use the linearity of the triangle to re-
duce the number of tests on the four vertices of a
shadow map pixel. If the largest value at one of
the four corners is lower than the previous entry
in the shadow map, we replace the old value
(Fig. 4b). All other locations on the triangle sur-
face inside the viewing pyramid of the pixel are lo-
cated in front of the test point and will be illumi-
nated. Once the corner with the largest value is de-
termined, we can use the same corner for all other
shadow-map pixels because they all have the same
topology.
Filtering is applied during rendering because only
those pixels that contribute to the visible part of
the shadow in the final image must be filtered.

88

PCF filtering is less complex than bilinear filter-
ing. Bilinear filtering is only possible in image
space, since averaging z values would bear no re-
lation to the geometry of the scene. For each tech-
nique, a certain neighborhood of the sample point
in the shadow map must be scanned. Bilinear fil-
tering would require the evaluation of the complete
rendering function, i.e., the illumination model, for
each sample position. This turns out to be very
time consuming because we are using a very com-
plex illumination model. PCF filtering just makes
simple comparisons of depth values and averages
binary numbers.
Shadows created by this method approximate the
shape of the real shadow. This is due to the dif-
ferent representations of the data set, i.e., the
boundary surface created by marching cubes,

and the original data set, which is the basis of
scene rendering. The main reason why we do
not use a surface representation for the object it-
self is the quality and smoothness of the surface.
In our tests, we never achieved such high quality
and smoothness of surface with surface rendering
as we did with volume rendering. With volume
rendering, parameters can be chosen carefully
so that the ray diffuses into the object up to a cer-
tain degree. This results in a much more realistic
image.
Due to thresholding artifacts in surface reconstruc-
tion, noticeable differences appear in detailed
structures (Fig. 5). In this case, it is necessary to
use the same rendering technique and the same da-
ta representation for both shadow-map generation
and final rendering.

shadow map

14.0
12.0

8.0 9.0

shadow map

s
t

L

3a

4a

4b

3b 5a

5b

Fig. 3. a unfiltered shadow of a sphere; b PCF filter

Fig. 4a, b. Self-shadowing

Fig. 5. a artifacts in detailed structures (marching cubes); b shadow is based on volume rendering (same algorithm as used for final
image)

89

S”
S

36.9

38.1 36.8

37.3

...

...

... ...38.1

P”i,j

P’i,j+1 P’i+1,j+1

P’i,j P’i+1,j

S’

6

Both of the images in Fig. 5 comprise the same
size of shadow maps, i.e., 100�100 pixels, which
is about 2.26 % of the final image size. According
to the notation used by Reeves et al. (1987), we se-
lected a neighborhood of three pixels in each direc-
tion, a resolution factor of 1, and a bias of 50% of
the length of a voxel diagonal to create the images.
In contrast to Williams' (1978) proposal, we did
not use 16-bit integers, but single-precision float-
ing point numbers to represent the depth values
in the shadow map. This avoids errors due to depth
quantization.

4 Creating shadow maps with ray
tracing techniques

Upgrading a ray tracer to generate shadow maps is
straightforward and easily implemented. Further
processing of material properties, colors, and light
intensities is not necessary, since only depth infor-
mation is required for the shadow map. The same
routines that are used for image rendering can also
be applied to shadow precomputation. The only
difference is a switch of viewing perspective from
the camera to the light sources. In contrast to pro-
jection methods, our ray-tracing approach is not
capable of rendering several shadow maps simulta-
neously. In our case, this means that due to single
block processing (see Sect. 2), the whole data set
must be reloaded for each light source. Usually,
the number of light sources is restricted, and shad-
ow maps can be saved for subsequent computa-
tions. We can reuse a shadow map if the position
of the respective light source and the number and
position of objects in the scene do not change.
Artifacts due to ray-tracing techniques that possi-
bly show up in the final image are similar to those
noticeable in the images created with marching
cubes shadow maps (see Sect. 3). Jagged edges
can be smoothed with PCF filters in the way al-
ready described (see Sect. 3.2). Subsampling can
be applied to avoid self-shadowing problems, but
it is very inefficient and time consuming. Some
ray-tracing systems do not support subsampling.
Therefore, we have developed an effective pseu-
do-subsampling technique with a minimum of
computational overhead.
For pseudo-subsampling, we extend the shadow
map S by an additional row and column. The pixel

corners of the shifted shadow map S0 are centered
on the pixels of the original shadow map S (Fig. 6).
For each entry in the new shadow map S00, we cre-
ate a new pixel value P00i;j;from the maximum of the
four pixels P0i;j; P0i�1;j; P0i;j�1; and P0i�1;j�1;that are
covered by the new pixel.

7

Fig. 6. Pseudo-subsampling

Fig. 7. 3D Reconstruction of chin and throat, shadow
with semitransparency: tumor is visible in red through
transparent skin

90

The results of this heuristic approach are very
promising, provided that the shadow map is at least
as large as the final image.
Both methods described are only capable of ren-
dering shadows for opaque objects. Especially in
medical imaging, it is often necessary to take a
closer look into the interior structures of an object
(Fig. 7). Therefore, exterior layers must be ren-
dered transparently. The only way to work around
this flaw is either to neglect object transparency for
the shadow maps, or to ignore semitransparent and
invisible objects. Both methods generate unrealis-
tic and irritating results.
In the next section we describe an extension to the
shadow Z-buffer algorithm that can also handle
shadows of transparent objects.

5 Shadows of transparent objects

Shadow maps, introduced in the previous sections,
consist of simple two-dimensional arrays. Each el-
ement stores a floating point number that repre-
sents the distance for complete absorption of a
ray. If a ray passes one or more transparent objects,
then only a certain percentage of light is absorbed
from the medium. We develop a special data struc-
ture for extended shadow maps (Matzat 1996),
which, if necessary, replaces the depth value by
an intensity profile for each ray.

5.1 Extended shadow maps

Each light source is associated with a data struc-
ture that contains the entire information of an ex-
tended shadow map (Fig. 8). Each entry of the fi-
nal map consists of two pointers and an integer.
The first pointer refers to the shadow map, and
the second one points to an array of intensity pro-
files. The integer specifies the length of this array.
Figure 8 shows two potential states of the extended
shadow map. Figure 8a describes the situation dur-
ing preprocessing, i.e., the generation of the shad-
ow maps, and Fig. 8b shows the visualization
stage.
A shadow map entry can be interpreted in two
ways. In the preprocessing stage, the entry is used
as a pointer to a concatenated list. Each list entry
consists of three elements. The first element con-
tains the light intensity of a ray at a specific loca-

tion. The second stores the distance value of this
location with respect to the light source. The last
element is a pointer that refers to the next element
in the list, if it exists. When we create a shadow
map, we have to check each sampling position
along the ray to see if the light intensity has chan-
ged. If a predefined threshold is exceeded, we ap-
pend a new element to the list, which is initialized
with the corresponding values.
When the extended shadow map is complete, we
convert it into a more compact representation. Af-
ter this transformation, each element in the shadow
map is reduced to a floating point number. We
parse the shadow map and analyze each entry to
prepare it for the transformation. If a pointer refers
to a single list element, there are two cases: first,
there could be an intersection with an opaque ob-
ject that completely blocks out the light. In this
case, the distance, which is stored in the list ele-
ment, replaces the pointer, and the memory for
the list element is freed. Second, the ray could
have passed through a transparent object, but did
not intersect any other objects, which means that
the object casts no shadow on the surface of anoth-
er object and only self-shadowing could occur.
This case is masked by setting the distance to in-
finity.
If a shadow map entry points to a list that contains
more than one element, its ray must have traversed
several semitransparent objects. We call this a non-
trivial list. In this case we create a linear array with
the same number of elements as the sum of ele-
ments in all nontrivial lists. Each element consists
of two entries, one for the remaining light intensity
Ii and one for the depth value di. We copy the list
contents sequentially to the array in the original or-
der. The intensity value 0 marks the end of the list
in the array. Finally, we replace the pointer in the
shadow map with an index to the start position of
the list in the linear array. We use a negative value
for the index to separate it from the depth values.
This data structure implements effective memory
management that requires exactly the same amount
of memory as the method for precise shadow gen-
eration introduced in the previous Section, provid-
ed that there are no transparent objects in the
scene. If there are the shadow map finally only
contains floating point numbers to store the dis-
tance values and a pointer to the array of intensity
profiles. Another advantage is the fact that after
transformation we no longer use any concatenated

91

lists. This saves us a lot of pointer overhead. Addi-
tionally, traversing a list is more expensive than
reading from an array during shadow calculation.

5.2 Generation of extended shadow maps

Since the appearance of a shadow primarily de-
pends on the silhouette of an object, only the
modulation of light intensity is measured on the
object surface. A certain percentage of light is
emitted by diffuse and specular reflection. The re-
maining percentage of light is transmitted through
the surface. This means that we have abrupt
changes in light intensity on a surface, and we as-

sume exponential reduction of light intensity in-
side a volume. To simplify the model, we further
assume that, in between two discrete sampling lo-
cations of the intensity profile, the light intensity
does not change, even though there might be a
volume in between. During visualization, object
shadows are distinctly visible only in the projec-
tion on other objects rather than inside the obscur-
ing object itself. The algorithm could be easily ex-
tended to handle multiple marching cubes surfac-
es. This would increase the complexity of the al-
gorithm, but could be used to simulate outer sur-
faces shadowing inner surfaces. Multiple surfaces
can also approximate density gradients inside the
volume.

shadow map
di

dj dk

I j Ik

dn

I l

shadow map
profile

di

dn

0

0 r

m

t

I j Ik

dkdj

-t

0

I i

a

b

0.0

1.0

r

I

V1
V2

G1

G2

a
b c

I1 I2

0

1

2

3

new

m = 4

8a

8b

9

10

Fig. 8. Extended shadow map: a during preprocessing;
b during rendering

Fig. 9. A ray intersecting several semitransparent volumetric
and geometric objects

Fig. 10. Merging four intensity profiles

92

Figure 9 shows an example of a ray that intersects
several semitransparent volumetric and geometric
objects.
The ray intersects volume V1. At position a we de-
termine the reduction of intensity due too passing
through the surface. This value is valid for all sam-
ple positions inside V1. This means that for each
sample position we assume a light intensity of I1.
When traversing V1, the ray takes samples from
the volume at several positions, and for each sam-
ple we calculate the intensity reduction again. The
ray leaves the volume at position b, and we com-
pare the reduction of intensity to the previous sam-
ple. If it is greater than the old value, we append
this position, together with the current intensity,
to the intensity profile.
The area between b and c is empty, and therefore
we disregard the reduction of light intensity in this
region. Following the ray, on the next position we
have an intersection with an object G1 (geometry)
at c and an associated intensity I2. Accordingly, the
shadow of the volumetric object V1, which is cast
onto G1, obtains correct intensities.

5.3 Evaluation of the extended
shadow map

We transform each sample point from object space
into the coordinate system of the light source and
project it onto the shadow map. If the corresponding
value in the shadow map is positive, we have a depth
value that can be compared to the distance between
the point and the light source, as already mentioned.
A greater distance means that the point is in the shad-
ow of that light source. If the pixel value is negative,
we have an index that refers to an intensity profile,
which is stored in an additional array. The negated
index addresses a list that is traversed until we find
an interval of two entries i, i+1 with di<d<di+1,
where d denotes the distance between the point and
the light source. The intensity I, which is assigned
to the point, is equal to the intensity of entry i(I=Ii).
If the distance value of the point is greater than all
other entries (dn<d), we assume that the light source
is completely obscured for that point (I=0).

5.4 Intensity profiles and filtering

Artifacts induced by this method are similar to those
described in Sect. 3.2. Jagged edges can be

smoothed by PCF filtering, and self-shadowing
can be avoided by pseudo-subsampling. Just as be-
fore, we extend the shadow map by one row and
one column. One pixel in the final shadow map cov-
ers four pixels of the original map (see Sect. 4). If
these four pixels contain lists with just a single en-
try, the new depth value corresponds to their maxi-
mum. For nontrivial lists with more than one entry,
we must combine them and create a new list.
Variable nl denotes the length of list l
(l2{0, ... , 3}). Usually we have four lists, but
some of the lists can be empty. Hence m refers
to the number of nonempty lists. For simplicity
reasons, we rename the nonempty lists, so that they
obtain sequential numbers. Each list element con-
sists of two entries di;k and Ii;k(0 � i < nk, 0 � k
< m), for storing the distance values and intensi-
ties, respectively, of the four pixels. Variables dj
and Ij accordingly refer to the values in the new
list.
The following algorithm merges four lists and cre-
ates the new list:

Algorithm 1. Merging intensity profiles

For (k=0; k<m; k++)
ek=d0;k;

j=0;
dj=max(ek; 0�k<m);
/* while new list is incomplete */
while (dj<max(dnk0ÿ1k; 0�k<m))
{ /* check all lists */

for (k=0; k<m; k++)
{ /* search for next item */

i=0;
while (di,k�d j) and (i<nk)
{

i=i+1;
}
if (i<nk)
{ /* store next item */

ek=di,k;
ik=Ii,k;

}
}
j=j+1;
dj=max(ek; 0�k<m);

}

The algorithm takes the first element from each of
the four lists. The element containing the largest

93

distance value is the first element in the new list.
Subsequently, we check each list for the next ele-
ment with a distance value larger than the last dis-
tance value in the new list. The element containing
the largest distance value is appended to the new
list in the same way as before. Figure 10 shows
the first and second group of elements chosen by
the algorithm.
We repeat this procedure until we reach the end of
all lists. When the new list is complete, we copy it
to the array that keeps the intensity profile and cre-
ate the next list.

6 Conclusions

We have presented two variants of the shadow Z-
buffer algorithm. They have been designed for ap-
plications in medical imaging and volume visual-
ization. These principles can be transferred to
any other kind of data, especially volumetric and
geometric representations. The results turned out
to be very promising because most of the addition-
al computations required for shadow generation
can be performed during a preprocessing stage,
and thus can be reused throughout an animation se-
quence without further overhead. Shadow-map
computation takes about 70% of the time required
for image rendering. The process can be accelerat-
ed by the use of a smaller shadow map, but there is
a trade-off between the size of a shadow map and
the accuracy of the shadow. The memory required
to store the shadow maps is in linear proportion to
the size of the maps. Since we only have two-di-
mensional maps, our algorithm consumes much
less memory than ordinary volume methods for
shadow generation.
The marching cubes method facilitates the simulta-
neous calculation of several shadow maps and
therefore is an effective approach for approx-
imative shadow-map generation. The method is in-
dependent of the visualization system, but it uses
different representations for shadow map and im-
age generation.
Subsampling used to avoid self-shadowing turned
out to be superior to any other offset method. Al-
though our system requires sequential shadow-
map generation, the results are more realistic than
the results of the approximation. We avoid self-
shadowing by using a filter technique on the shad-
ow map.

For our system, only the shadow Z-buffer tech-
nique was applicable. Transparent objects required
an extension to the shadow Z-buffer. We have de-
veloped a data structure that enables us to store the
additional information in a compact and efficient
way. Here also, appropriate filter methods reliably
help to avoid self-shadowing. Although this heu-
ristic algorithm is not based on a physically correct
model, the results, especially the simulations of
penumbrae, show that the algorithm provides a fast
method to create a good visual impression, and this
enhances the plausiblity and quality of the final
image (Fig. 11).

References

Appel A (1968) Some techniques for shading machine render-
ings of solids. AFIPS 1968 Springjoint Computer Confer-
ence 32:37±45

Atherton PR, Weiler K (1977) Hidden surface removal using
polygon area sorting. ACM SIGGRAPH, Comput Graph,
11:214±222

Atherton PR, Weiler K, Greenberg D (1978) Polygon shading
generation. ACM SIGGRAPH Comput Graph 12:275±281

Bergeron P (1987) A general version of Crow's shadow vol-
umes, IEEE Comput Graph Appl 6:17±28

Crow FC (1977) Shadow algorithms for computer graphics.
ACM SIGGRAPH, Comput Graph 11:242±248

Foley J, Dam A van, Feiner S, Hughes J (1989) Computer graph-
ics: principles and practice. Addison-Wesley Reading Mass

Fig. 11. 3D Reconstruction of an MRI scan

94

Glassner AS (1989) An introduction to raytracing. Academic,
London

Haines EA, Greenberg DP (1987) The light buffer: a shadow-
testing accelerator. IEEE Comput Graph Appl 6:6±16

Lengen RH van (1992) The priority Z-buffer. In: Hagen H, Mül-
ler H, Nielson GM (eds) Focus on scientific visualization.
Springer, New York, pp 293±304

Lengen RH van, Meyer J (1994) Efficient 3-D visualization of
hybrid medical data sets. Technical Report 257/94, Univer-
sity of Kaiserslautern, Germany

Lorensen WE, Cline HE (1987) Marching cubes: a high resolu-
tion 3D surface construction algorithm. ACM SIGGRAPH,
Comput Graph 21:163±169

Matzat M (1994) Marching cube Algorithmus zur Ober-
flächenrekonstruktion medizinischer Daten. Thesis, Univer-
sity of Kaiserslautern, Deptartment of Computer Science,
Kaiserslautern, Germany

Matzat M (1996) Die Schattenberechnung von Schatteninfor-
mationen für die Visualisierung medizinischer Daten. The-
sis, University of Kaiserslautern, Deptartment of Computer
Science, Kaiserslautern, Germany

Montani C, Scateni R, Scopigno R (1994) A modified look-up
table for implicit disambiguation of marching cubes. Visual
Comput 10(6):353±355

Reeves WT, Salesin DH, Cook RL (1987) Rendering antialiased
shadows with depth maps. ACM SIGGRAPH, Comput
Graph 21:283±291

Watt A, Watt M (1992) Advanced animation and rendering tech-
niques. Addison-Wesley, New York

Williams L (1978) Casting curved shadows on curved surfaces.
ACM SIGGRAPH, Comput Graph 12:270±274

ROLF HENDRIK VAN LEN-
GEN is a Research Assistant
and PhD student at the Universi-
ty of Kaiserslautern, Germany.
He received his MS from the
Technical University of Braun-
schweig, Germany, in 1989. His
research interests include volume
rendering, medical imaging, and
scientific visualization.

JÖRG MEYER is a Research
Assistant and PhD student at the
University of Kaiserslautern,
Germany. He received his MS
in 1995 from the University of
Kaiserslautern and specialized
in the field of volume visualiza-
tion, and medical imaging. His
current research focuses on new
rendering and display technolo-
gies and interactive volume visu-
alization.

MATHIAS MATZAT received
his MS from the University of
Kaiserslautern in 1996. His re-
search centers on scientific visu-
alization and medical imaging.
Currently he works for AED
Graphics, Bonn.

HANS HAGEN has been Pro-
fessor of Computer Science at
the University of Kaiserslautern
since 1988. He received his MA
in 1979 at the University of Frei-
burg, Germany, and his PhD in
1982 from the Mathematics De-
partment at University of Dort-
mund, Germany. From 1983 to
1986 , he was an adj. Assistant
Professor at Arizona State Uni-
versity (Phoenix, Ariz.), and
from 1986 to 1988 an Associate
Professor at University of Braun-
schweig, Germany. His research
interests include geometric mod-
eling, scientific visualization,
computer aided geometric design
(CAGD), and computer graphics.

